TinyLogic UHS Two-Input OR Gate

Description

The NC7SZ32 is a single two-input OR gate from ON Semiconductor's Ultra-High Speed (UHS) series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V, independent of V_{CC} operating voltage.

Features

- Ultra-High Speed: tPD 2.4 ns (Typical) into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches Performance of LCX Operated at 3.3 V V_{CC}
- Power Down High–Impedance Inputs / Outputs
- Over-Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry
- Ultra-Small MicroPakTM Packages
- Space-Saving SC-74A and SC-88A Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

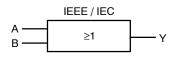
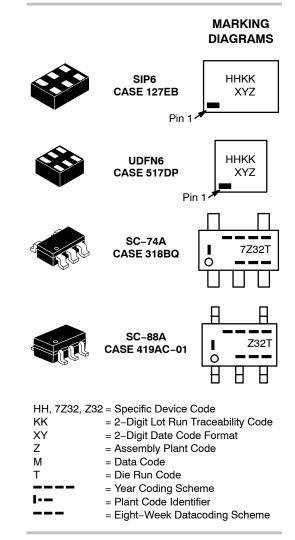



Figure 1. Logic Symbol

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Pin Configurations

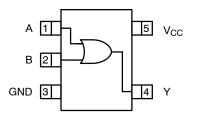
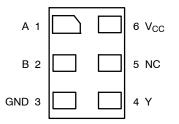



Figure 2. SC-88A and SC-74A (Top View)

PIN DEFINITIONS

Pin # SC-88A / SC74A	Pin # MicroPak	Name	Description
1	1	А	Input
2	2	В	Input
3	3	GND	Ground
4	4	Y	Output
5	6	V _{CC}	Supply Voltage
	5	NC	No Connect

Figure 3. MicroPak (Top Through View)

FUNCTION TABLE (Y = A + B)

Inp	Output	
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Param	eter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.5	6.0	V	
V _{IN}	DC Input Voltage		-0.5	6.0	V
V _{OUT}	DC Output Voltage		-0.5	6.0	V
I _{IK}	DC Input Diode Current	V _{IN} < -0.5 V	-	-50	mA
		V _{IN} > 6.0 V	-	+20	
I _{OK}	DC Output Diode Current	V _{OUT} < -0.5 V	_	-50	mA
		V_{OUT} > 6 V, V_{CC} = GND	_	+20	
I _{OUT}	DC Output Current		-	±50	mA
$I_{CC} \text{ or } I_{GND}$	DC V _{CC} or Ground Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under Bias		-	+150	°C
ΤL	Junction Lead Temperature (Sold	ering, 10 Seconds)	-	+260	°C
PD	Power Dissipation in Still Air	SC-74A	-	225	mW
		SC-88A-5	-	190	
		MicroPak-6	-	327	
		MicroPak2 [™] –6	_	327	
ESD	Human Body Model, JEDEC: JES	D22-A114	_	4000	V
	Charge Device Model, JEDEC: JE	ESD22-C101	-	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

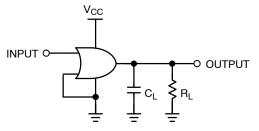
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.50	V
	Supply Voltage Data Retention		1.50	5.50	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Times	V_{CC} = 1.8 V, 2.5 V ±0.2 V	0	20	ns/V
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0	10	
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	5	
θ_{JA}	Thermal Resistance	SC-74A	-	555	°C/W
		SC-88A-5	-	659	
		MicroPak-6	-	382	
		MicroPak2-6	-	382	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float.

NC7SZ32

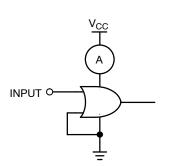
DC ELECTICAL CHARACTERISTICS


	Parameter			T _A = +25°C			T _A = −40 to +85°C			
Symbol		V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit	
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95		0.65 V _{CC}	-	-	0.65 V _{CC}	-	V	
		2.30 to 5.50		0.70 V _{CC}	-	-	0.70 V _{CC}	-		
V _{IL}	LOW Level Input Voltage	1.65 to 1.95		-	-	0.35 V _{CC}	-	0.35 V _{CC}	V	
		2.30 to 5.50		-	-	0.30 V _{CC}	-	0.30 V _{CC}	1	
V _{OH}	HIGH Level Output Voltage	1.65	$V_{IN} = V_{IH},$	1.55	1.65	-	1.55	-	V	
		1.80	I _{OH} = -100 μA	1.70	1.80	-	1.70	-		
		2.30		2.20	2.30	-	2.20	-		
		3.00		2.90	3.00	-	2.90	-		
		4.50		4.40	4.50	-	4.40	-		
		1.65	I _{OH} = -4 mA	1.29	1.52	-	1.29	-		
		2.30	I _{OH} = -8 mA	1.90	2.15	-	1.90	-		
		3.00	I _{OH} = -16 mA	2.40	2.80	-	2.40	-		
		3.00	I _{OH} = -24 mA	2.30	2.68	-	2.30	-		
		4.50	I _{OH} = -32 mA	3.80	4.20	-	3.80	-		
V _{OL}	LOW Level Output Voltage	1.65	$V_{IN} = V_{IL},$	-	0.00	0.10	-	0.10	V	
		1.80	I _{OL} = 100 μA	-	0.00	0.10	-	0.10]	
		2.30		-	0.00	0.10	-	0.10]	
		3.00		-	0.00	0.10	-	0.10]	
		4.50		-	0.00	0.10	-	0.10]	
		1.65	I _{OL} = 4 mA	-	0.80	0.24	-	0.24]	
		2.30	I _{OL} = 8 mA	-	0.10	0.30	-	0.30]	
		3.00	I _{OL} = 16 mA	-	0.15	0.40	-	0.40]	
		3.00	I _{OL} = 24 mA	-	0.22	0.55	-	0.55]	
		4.50	I _{OL} = 32 mA	-	0.22	0.55	-	0.55]	
I _{IN}	Input Leakage Current	1.65 to 5.50	V _{IN} = 5.5 V, GND	-	-	±1	-	±10	μA	
I _{OFF}	Power Off Leakage Current	0	V_{IN} or V_{OUT} = 5.5 V	-	-	1	-	10	μA	
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} = 5.5 V, GND	-	-	2.0	-	20	μA	

NC7SZ32

AC ELECTRICAL CHARACTERISTICS

				٦	T _A = +25°C		T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Мах	Min	Мах	Unit
t _{PLH} , t _{PHL}	Propagation Delay	1.65	C _L = 15 pF,	-	5.5	12.0	-	12.7	ns
	(Figure 4, 5)	1.80	R _L = 1 MΩ	_	4.6	10.0	-	10.5	
		2.50 ±0.30		_	3.0	7.0	-	7.5	
		3.30 ±0.30		_	2.4	4.7	-	5.0	
		5.00 ±0.50		_	1.9	4.1	-	4.4	
		3.30 ±0.30	C _L = 50 pF,	_	3.0	5.2	-	5.5	
		5.00 ±0.50	R _L = 500 Ω	_	2.4	4.5	-	4.8	
C _{IN}	Input Capacitance	0.00		_	4	-	-	-	pF
C _{PD}	Power Dissipation Capacitance	3.30		-	20	-	-	-	pF
	(Note 2) (Figure 6)		1	-	26	-	-	-	


2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

3. C_L includes load and stray capacitance. Input PRR = 10 MHz, $t_w = 500$ ns

Figure 4. AC Test Circuit

NOTE:

4. Input = AC Waveform; $t_r = t_f = 1.8 \text{ ns}$; PRR = 10 MHz; Duty Cycle = 50%.

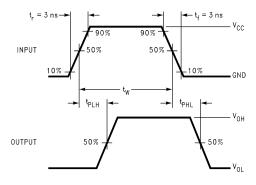
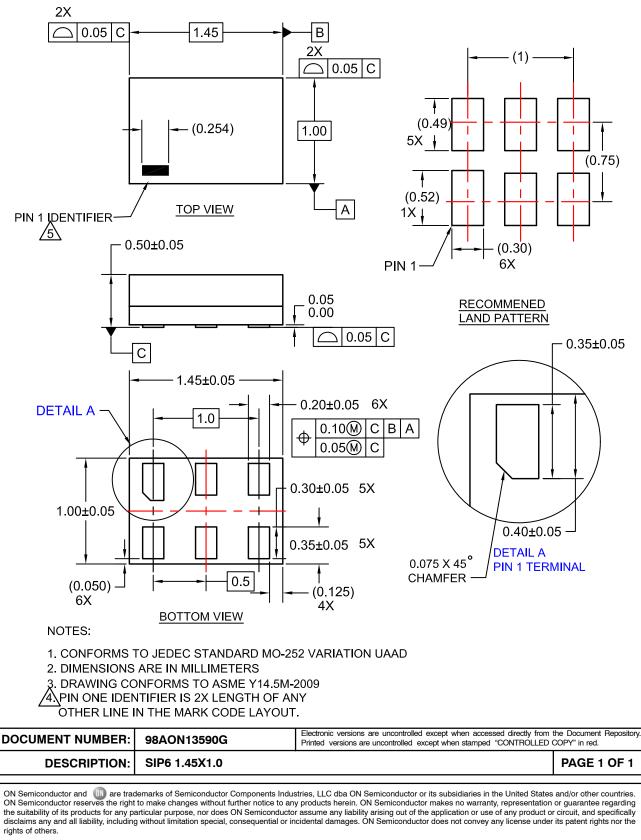


Figure 5. AC Waveforms

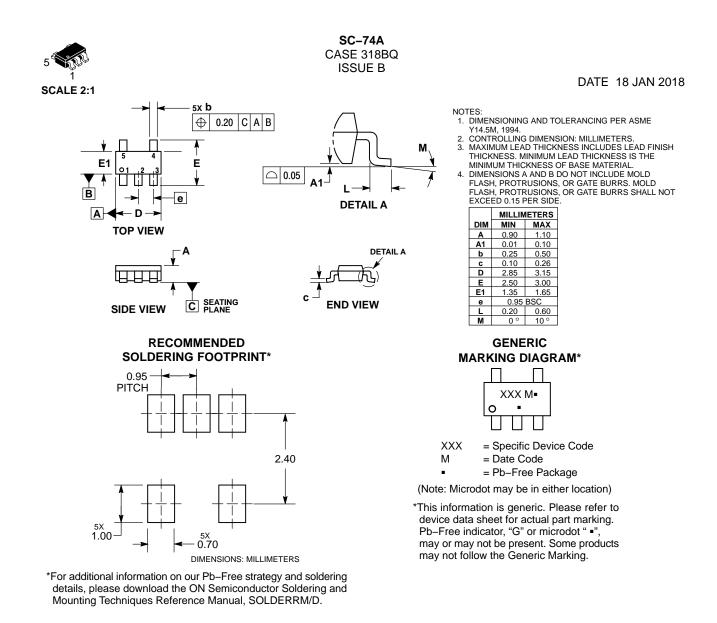
NC7SZ32

ORDERING INFORMATION

Part Number	Top Mark	Packages	Shipping [†]
NC7SZ32M5X	7Z32	SC-74A	3000 / Tape & Reel
NC7SZ32P5X	Z32	SC-88A	3000 / Tape & Reel
NC7SZ32L6X	HH	SIP6, MicroPak	5000 / Tape & Reel
NC7SZ32FHX	НН	UDFN6, MicroPak2	5000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



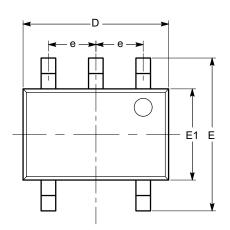
SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016

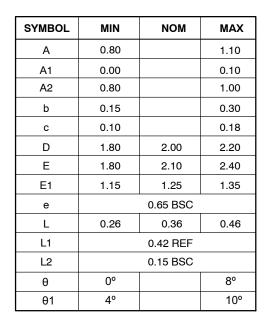
DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except w	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. P versions are uncontrolled except when stamp	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74A	PAGE 1 C	OF 2

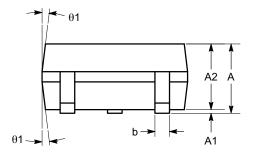
DOCUMENT NUMBER: 98AON66279G

PAGE 2 OF 2

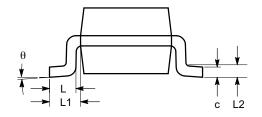

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ BY I. HYLAND.	27 JUN 2017
А	CORRECTED MARKING DIAGRAM FROM 6 TO 5-LEAD. REQ BY I. HYLAND.	20 SEP 2017
В	CORRECTED SOLDERING FOOTPRINT PITCH FROM 3.40MM TO 2.40MM. REQ. BY I. HYLAND.	18 JAN 2018

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.



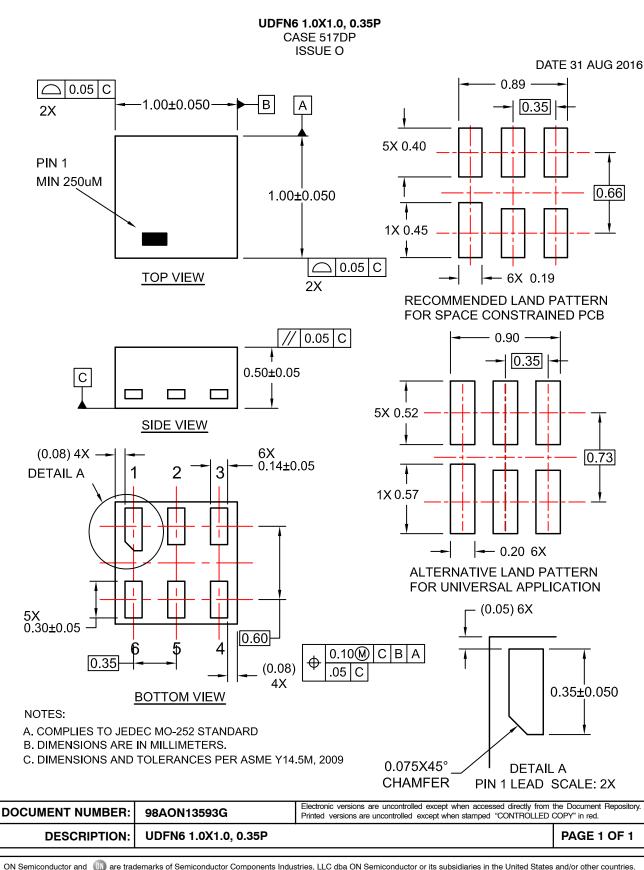

SC-88A (SC-70 5 Lead), 1.25x2 CASE 419AC-01 ISSUE A

DATE 29 JUN 2010



SIDE VIEW

END VIEW


Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34260E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PAGE 1 OF 1						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically				

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative