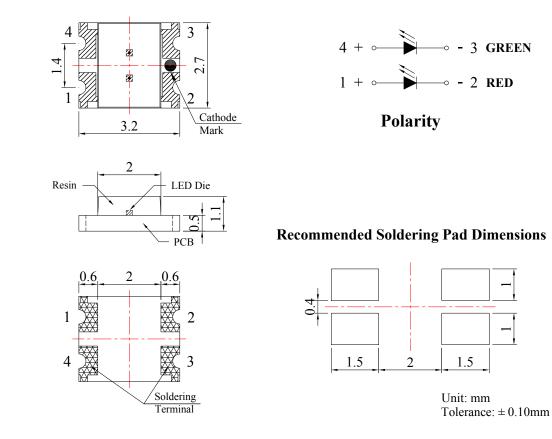


Features:

- ◇ Package in 8mm tape on 7"diameter reel.
- ◇ Compatible with automatic placement equipment.
- \diamond Compatible with infrared and vapor phase reflow solder process.
- ◇ Bi-color type.
- $\diamond~$ Colors: Hyper Red & Super Yellow Green.
- $\diamond~$ The product itself will remain within RoHS compliant Version.

Descriptions:


- This SMD LED is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
- \diamond Besides, lightweight makes them ideal for miniature applications, etc.

Applications:

- ♦ Automotive: Backlighting in dashboard and switch.
- $\diamond~$ Telecommunication: Indicator and backlighting in telephone and fax.
- $\diamond~$ Flat backlight for LCD, switch and symbol.
- ♦ Circuit board.
- \diamond Status indicators.
- \diamond Commercial use.
- $\diamond~$ Advertising Signs.
- \diamond Computer.
- \diamond TV set.
- \diamond Monitor.
- \diamond General use.

Package Dimension:

Part No.	lo. Chip Material		Source Color	
	AlGaInP	Watar Class	Hyper Red	
1210-FLWC-HRSYG	AlGaInP	Water Clear	Super Yellow Green	

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.10mm (.004") unless otherwise specified.
- 3. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25℃

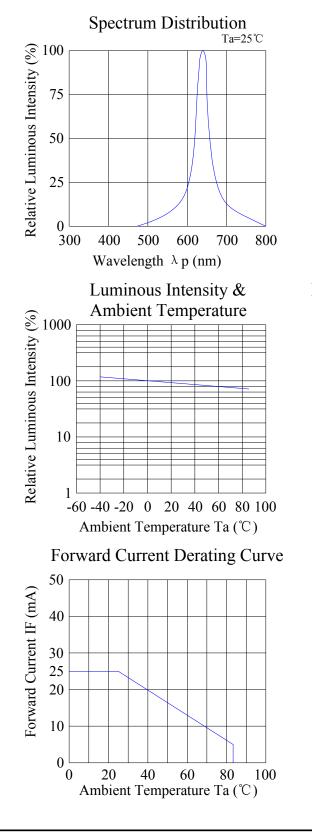
Parameters	Symbol	Emitting Color	Max.	Unit	
Dower Discipation	PD	Hyper Red	60	mW	
Power Dissipation		Super Yellow Green	60		
Peak Forward Current	IED	Hyper Red	100	mA	
(1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	Super Yellow Green	100		
Continuous Forward Current	IF	Hyper Red	25	mA	
		Super Yellow Green	25		
Reverse Voltage	VR	5 V		V	
Electrostatic Discharge (HBM)	ESD	2000		V	
Operating Temperature Range	Topr	-40℃ to +80℃		2	
Storage Temperature Range	Tstg	-40℃ to +85℃			
Soldering Temperature	Tsld	260 $^{\circ}$ C for 5 Seconds		nds	

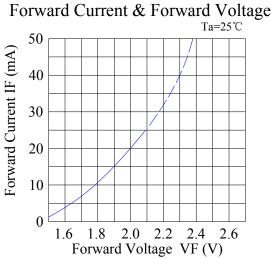
Electrical Optical Characteristics at $Ta=25^{\circ}C$

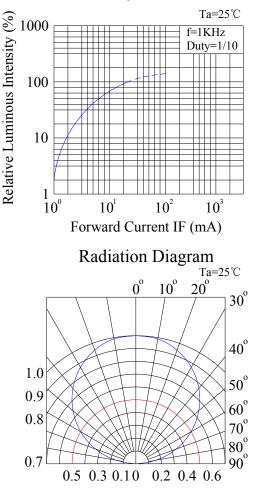
Parameters	Symbol	Emitting Color	Min.	Тур.	Max.	Unit	Test Condition	
	IV	Hyper Red	80	120				
Luminous Intensity		Super Yellow Green	35	70		mcd	IF=20mA (Note 1)	
		Hyper Red		120			IF=20mA (Note 2)	
Viewing Angle	20 _{1/2}	Super Yellow Green		120		Deg		
		Hyper Red		632		nm	IF=20mA	
Peak Emission Wavelength	λр	Super Yellow Green		575			(Measurement @Peak)	
Dominant Wavelength	λd	Hyper Red		624		nm	IF=20mA (Note 3)	
		Super Yellow Green		573				
	Δλ	Hyper Red		20				
Spectral Line Half-Width		Super Yellow Green		20		nm	IF=20mA	
Forward Voltage	VF	Hyper Red	1.60	2.00	2.40	V	IF=20mA	
		Super Yellow Green	1.60	2.00	2.40			
Reverse Current	IR	Hyper Red			10	μA		
		Super Yellow Green					V _R =5V	

Notes:

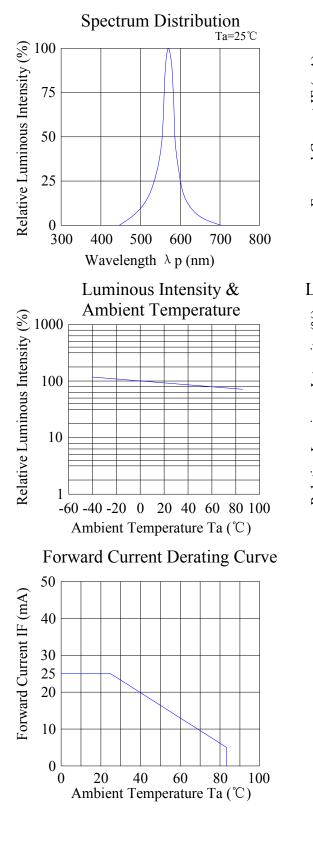
1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.


2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.


3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.



Typical Electrical / Optical Characteristics Curves (25℃ Ambient Temperature Unless Otherwise Noted) Hyper Red:



Luminous Intensity & Forward Current

Super Yellow Green:

Forward Current & Forward Voltage Ta=25℃ 50 Forward Current IF (mA) 40 30 20 10 0 1.6 1.8 2.0 2.2 2.4 2.6 Forward Voltage VF (V) Luminous Intensity & Forward Current Ta=25℃ Relative Luminous Intensity (%) 00 001 0001 0001 0001 f=1KHz Duty=1/10

 10^{2}

 10°

Forward Current IF (mA)

Radiation Diagram

 0°

0.5 0.3 0.10 0.2 0.4 0.6

 10^{3}

Ta=25℃

30°

40°

 50°

60°

 70°

 80° 90°

 20°

 10°

1.0

0.9

0.8

0.7

 10^{1}

Reliability Test Items And Conditions:

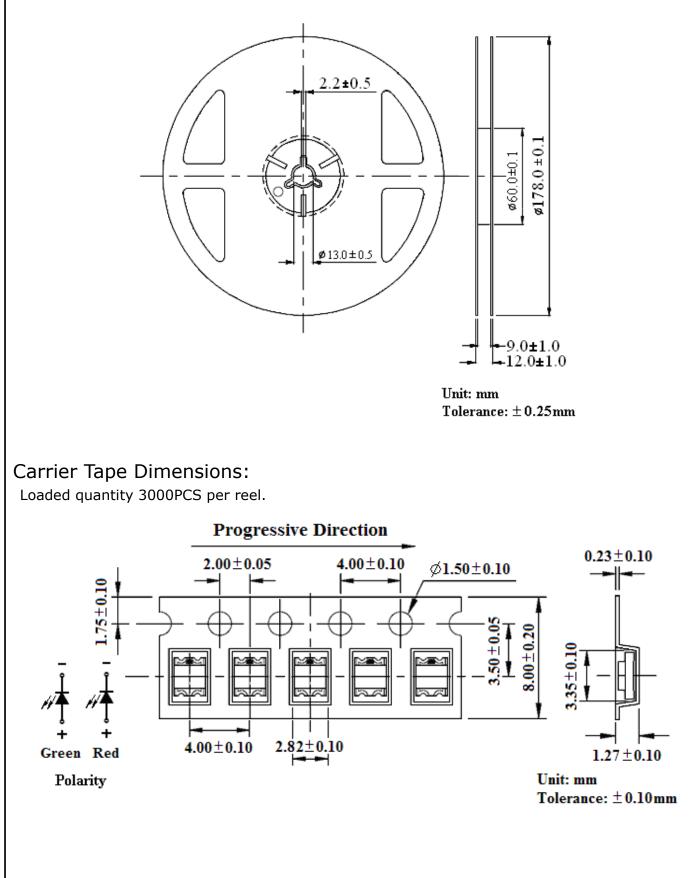
The reliability of products shall be satisfied with items listed below:

Confidence level: 90%.

LTPD: 10%.

1) Test Items and Results:

No.	Test Item	Test Hours/Cycles Test Conditions		Sample Size	Ac/Re
1	Resistance to Soldering Heat	6 Min	Tsld=260±5℃, Min. 5sec	25pcs	0/1
2	Thermal Shock	300 Cycles	H: +100℃ 5min ∫ 10 sec L: -10℃ 5min	25pcs	0/1
3	Temperature Cycle	300 Cycles	H: +100℃ 15min ∫ 5min L: -40℃ 15min	25pcs	0/1
4	High Temperature Storage	1000Hrs.	Temp: 100 ℃	25pcs	0/1
5	DC Operating Life	1000Hrs.	IF=20mA	25pcs	0/1
6	Low Temperature Storage	1000Hrs.	Temp: -40 ℃	25pcs	0/1
7	High Temperature/ High Humidity	1000Hrs.	85℃/85%RH	25pcs	0/1


2) Criteria for Judging the Damage:

Itom	Cumbal	Test Conditions	Criteria for Judgment		
Item	Symbol	Test Conditions	Min	Max	
Forward Voltage	VF	IF=20mA		F.V.*)×1.1	
Reverse Current	IR	VR=5V		F.V.*)×2.0	
Luminous Intensity	IV	IF=20mA	F.V.*)×0.7		

*) F.V.: First Value.

Reel Dimensions:

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

2.1 Do not open moisture proof bag before the products are ready to use.

2.2 Before opening the package, the LEDs should be kept at $30\,^\circ\!\mathrm{C}$ or less and 80%RH or less.

2.3 The LEDs should be used within a year.

2.4 After opening the package, the LEDs should be kept at $30\,^\circ\!\!\mathrm{C}$ or less and 60%RH or less.

2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

2.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\pm5^{\circ}$ for 24 hours.

3. Soldering Condition

When soldering, for Lamp without stopper type and must be leave a minimum of 3mm clearance from the base of the lens to the soldering point.

To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

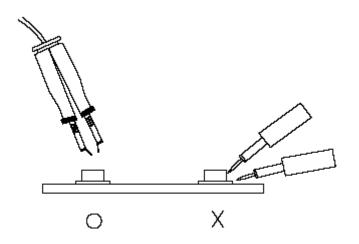
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

Soldering Iron		Wave Soldering		
Temperature Soldering Time	300℃ Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat Time Solder Wave Soldering Time	100℃ Max. 60 sec. Max. 260℃ Max. 5 sec. Max.	

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

4. Soldering Iron


Each terminal is to go to the tip of soldering iron temperature less than 260° for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.